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EQUATIONS WITH A PARALLEL KRYLOV SOLVER

Kumud Ajmani*
Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio 44135

and

Arthur C. Taylor, III'
Department of Mechanical Engineering
Old Dominion University, Norfolk, Virginia 23508

Abstract

This paper solves an ‘incremental’ form of the sen-
sitivity equations derived by differentiating the dis-
cretized thin-layer Navier Stokes equations with re-
spect to certain design variables of interest. The
equations are solved with a parallel, preconditioned
Generalized Minimal RESidual (GMRES) solver on
a distributed-memory architecture. The ‘serial’ sen-
sitivity analysis code is parallelized by using the
Single Program Multiple Data (SPMD) program-
ming model, domain-decomposition techniques, and
* message-passing tools. Sensitivity derivatives are
computed for low and high Reynolds number flows
over a NACA 1406 airfoil on a 32-processor Intel
Hypercube, and found to be identical to those com-
puted on a single-processor Cray Y-MP. It is esti-
mated that the parallel sensitivity analysis code has
to be run on 40-50 processors of the Intel Hyper-
cube in order to match the single-processor process-
ing time of a Cray Y-MP.

Introduction

The development of parallel computers with a
large number of processing nodes offers tremendous
increases in computer resources for computational
scientists. Parallel computers afford the realistic
possibility of combining the knowledge of diverse
engineering disciplines to produce an integrated,
multi-disciplinary effort to solve complex problems
in engineering design.

The High Speed Civil Transport (HSCT) ob-
jectives of the High Performance Computing and
Communications (HPCC) program!' depend heavily
on the design of methodologies for multi-disciplinary
analysis and design. Massively parallel implemen-
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tations of such design methodologies would be re-
quired to ensure improved computational efficiency
and tractability for large problems. The research
in this paper is chiefly motivated by this need for
the development of parallel, multi-disciplinary de-
sign techniques.

The field of Computational Fluid Dynamics
(CFD) has matured sufficiently to the point that
flow solutions provided by advanced CFD codes can
be reliably used to extract information for use in
aerospace vehicle design. A typical CFD code solves
a system of partial differential equations (PDEs)
on a discrete mesh, for a given, fixed, set of flow
conditions (like Mach number, Reynolds’ number
etc.). However, practical design codes usually re-

‘quire much additional information in the form of

Sensitivity Derivatives (SD), in order to produce an
optimum design.

A particular CFD code may be extended to cal-
culate aerodynamic sensitivity derivatives which are
consistent with the discrete flow solution provided
by the code. Each sensitivity derivative quantifies
the derivative of a system response (e.g. lift on an
airfoil) with respect to an independent design vari-
able (e.g. thickness of the airfoil). A large number of
sensitivity derivatives may be required to evaluate
the relative influence of all the parameters which
affect the vehicle design. Hence, it becomes criti-
cal that these sensitivity derivatives be computed
‘cheaply’, if CFD codes are to be incorporated into
practical multi-disciplinary design environments.

The simplest way of calculating semnsitivity
derivatives is by computing the ‘difference’ between
the two converged CFD solutions which correspond
to two different values for the design variable of in-
terest. This method is referred to as the ‘finite-
difference’ method of calculating sensitivity deriva-
tives. Although simple and straightforward, this
method can become prohibitively expensive in terms
of computational cost, particularly if the number of
design variables of interest is large.

The sensitivity derivatives can also be com-



puted by differentiating the governing equations of
fluid flow ; the differentiation can be undertaken
prior to the numerical discretization (comtinuum
method) or after the numerical discretization (dis-
crete method). Both of these methods are com-
putationally efficient as compared to the ‘finite-
difference’ method, and have been compared by
Shubin and Frank?. The linear system of equations
obtained by this differentiation of the governing
equations results in the Sensitivity Equations®45.

This research compares the ‘finite-difference’
method and the discrete method for calculating sen-
sitivity derivatives on a distributed-memory ma-
chine. The sensitivity equations for the discrete ap-
proach are derived by direct differentiation of the
system of discrete non-linear algebraic equations
which model the thin-layer Navier-Stokes (TLNS)
equations for 2-D steady flow®. The sensitivity
equations represent a large system of coupled, lin-
ear, algebraic equations, which must be solved to
yield the sensitivity derivatives of interest.

. The coefficient matrix corresponding to the lin-
ear system is large and sparse, and usually reflects
poor diagonal dominance. The large size of the ma-
trix rules out solution by direct matrix inversion, as
this would require prohibitively large core memory

(particularly for 3-D problems). In ‘standard’ form, -

the discrete sensitivity equations must be solved ‘as
is’ ; the method admits no approximations to the co-
efficient matrix. Thus, standard iterative methods
may converge very slowly, or may fail due to the
lack of diagonal dominance (or poor conditioning)
of the coefficient matrix. The ‘incremental’ form of
the sensitivity equations developed by Korivi et. al®
admits ‘approximations of convenience’ to the co-
efficient matrix, and thus overcomes the problems
posed in solving the ‘standard’ sensitivity equations.

The ‘incremental’ form admits approximations
to improve the diagonal dominance of the coeffi-
cient matrix {e.g. a time-term may be added to
the main-diagonal, certain off-diagonal terms may
be neglected etc.). This implies that quasi-Newion
iterative methods (which exist in most CFD codes)
can be used to solve the discrete semsitivity equa-
tions. This also implies that parallel solvers devel-
oped for iterative solutions of large, sparse linear
systems of equations”®®, can be applied without
modification to solve the system of sensitivity equa-
tions of interest. The existing literature pertaining
to parallel sensitivity analysis seems to be extremely
sparse. Some efforts in this direction are being made
by Das et. al'® and Olander et. al'l.

The particular quasi-Newton iterative method

used in this paper is based on a preconditioned
GMRES!2 solver. This solver has been success-
fully parallelized and validated for the original CFD
code used in this research, in a message-passing
environment, on a distributed-memory machine!®.
A domain-decomposition strategy has been used to
partition the original problem amongst all available
processors. The parallel semsitivity analysis code
thus developed is validated on a 32-processor Intel
Hypercube.

This paper is organized into four sections. This
introduction section is followed by a discussion of
(a) the analysis code — the governing equations,
spatial discretizations and implicit formulation, (b)
sensitivity equations in ‘standard’ and ‘incremen-
tal’ form, (c) parallel computing issues related to
the parallelization of (a) and (b). This is followed
by computational results and comparisons of ‘finite-
difference’ and discrete semsitivity derivatives for
laminar and turbulent flow cases. The final section
is a summary of the present work, and discusses fu-
ture work in this area.

Presentation of Theory

Parallel Flux-Balance Computations

The governing equations of 2-D compressible
fluid flow considered in this study are the thin-layer
Navier-Stokes equations written as
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The governing equations are solved computation-
ally in their integral, comservation law form in
generalized coordinates, using an implicit, upwind,
cell-centered finite volume formulation. The invis-
cid fluxes are discretized using Van Leer’s’® flux-
splitting scheme. The viscous fluxes are evaluated
with second-order accurate central-differences. A
nine-point stencil is used for higher-order accurate
calculations of the inviscid and viscous fluxes.

In a multiple-processor system, the discretized
form of equation 1 is solved by dividing the sin-
gle, large uniprocessor grid into a number of smaller
grids (domain-decomposition) ; each grid is then as-
signed to one individual processor. Note, that the
memory-access for each processor in a distributed-
memory environment is limited to the data resid-
ing in its local-memory only. This implies that the
parallel, multiple-processor calculations will be con-
sistent with the original uniprocessor calculations
only if information is exchanged across all grid in-



terfaces which are created because of the domain-
decomposition. ]

Since the computation of the residual vector R
uses a nine-point stencil, the flux-evaluation for cell-
faces which lie on (and adjacent to) domain bound-
aries will require information from (a2 maximum of)
two adjacent cells which reside in a neighboring pro-
cessor. This information is stored in two layers of
‘ghost’ cells at each domain boundary. Data from
the neighboring domains is ‘communicated’ to these
‘ghost’ cells, before the flux-evaluation routines are
invoked. The implementation of boundary condi-
tions at physical boundaries may also require com-
munication amongst processors. In particular, air-
foil calculations on C and O-type meshes require
communication between non-neighboring processors
in order to effect C and O-type periodicity. This
is achieved by communication amongst processors
which lie along the ‘cut’ of the particular C or O-
type grid. Further details regarding parallelization
of the original CFD code are contained in refer-
ence 13.

A discrete numerical steady-state solution of
equation 1 implies that

{R(@)}={0}y (2)

where { R(Q*)} is the residual vector, for the steady-

state solution {Q*}. The accuracy of {Q*} is di-
rectly affected by the accuracy of computation of the
inviscid and viscous fluxes. Equation 2 represents a
large system of coupled, algebraic, non-linear equa-
tions. An ‘implicit’ linearization of this non-linear
system produces a linear system which can be solved
directly by Newton’s root-finding method as
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In most CFD applications, [Q%Ql] is a large,
sparse, banded matrix, which can be very cum-
bersome to compute exactly (including consistent
boundary-condition linearizations, true flux jaco-
bians etc.). Even if the exact [9381(91] is available,
the core memory required to invert this matrix re-
stricts the practical application of exact Newton’s
method to all but moderate sized 2-D problems.

Hence, in practice, a quasi-Newton method is

used to solve equation 3. An approximate matrix

—

[——(—“R;QQ ] is comstructed, by introducing lineariza-

tion errors, adding an artificial ‘time-term’ to the

main diagonal, and/or splitting the original opera-
tor into simpler operators. The resulting ‘approxi-
mate’ system of equations is

[E@ragy=tr@n ©

This approximate linear system is then solved iter-
atively for "AQ, followed by a solution update in
equation 4. The tradeoff in using an approximate
operator is the reduced error-reduction per time-
step as compared to the exact Newton’s method.
Note, that no approximation is made in computing
{R"(Q)} at each time-step, and that the system is
solved in ‘delta’ or ‘incremental’ form. The ‘delta’
formulation ensures that the steady-state solutions
obtained from the quasi-Newton method and the
exact Newton method will be identical.

In the parallel code, the calculation of inviscid
and viscous fluxes is followed by ‘assembly’ of the
implicit coefficient matrix. The coefficient matrix
is ‘assembled’ from linear combinations of the in-
dividual flux-jacobian matrices for each cell. Each
domain computes its flux-jacobian matrices, and no
extra communication is required to assemble the fi-
nal coefficient matrix. This is because a five-point
stencil is used to compute the implicit operator,
which provides a sparse, banded, coefficient matrix
with five block-diagonals.

Thus, each processor (or domain) calculates its
own implicit matrix and residual vector, and the
original, large, system of linear equatioms corre-
sponding to the uniprocessor domain is transformed
to a series of smaller linear systems, with one linear
system for each processor. In this paper, a precon-
ditioned GMRES solver is used to iteratively solve
each linear system of equations for each domain.
Computationally, the GMRES algorithm involves
basic linear algebra kernels, namely, inner-products
of vectors, sazpy operations and matrix-vector prod-
ucts. These kernels must be parallelized in order to
obtain a parallel version of the GMRES solver. The
parallel GMRES solver used in this paper has been
validated to have the exact convergence rate of the
serial GMRES solver!3.

If the implicit coefficient matrix provided to the
GMRES solver lacks diagonal dominance (as is the
case with the sensitivity equations), the solver con-
verges very slowly to the solution of the correspond-
ing linear system. The convergence rate of the solver
can be improved by preconditioning the linear sys-
tem. Preconditioning can greatly reduce the over-
all computational effort required to solve the linear
system. The Lower-Upper Symmetric Gauss-Seidel



(LUSGS) scheme of Yoon and Jameson'® is modi-
fied into a pointwise-implicit block-solver, for use as
a ‘local’ preconditioner in this work. This precondi-
tioner is applied individually to the linear system in
each domain, and is found to be superior to the con-
ventional preconditioners based on incomplete fac-
torizations of the coefficient matrix!®.

Aerodynamic Sensitivity Equations

In general, the jtb aerodynamic system re-
sponse, C; is dependent on the vector of indepen-
dent variables {Q"}, the vector of grid coordinates

{X}, and the vector of design variables, {3}. This
can be written as

C; = C;(Q*(8), X(B), ) (8)

The sensitivity equations for any particular system
response, Cj, can be obtained from equation 6 as
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Equation 7 represents the total rate of change of C;
with respect to Sr.

The large system of non-linear equations which
model the fluid flow (equation 2) can be generalized
in the above vein and rewritten as

{R(Q‘(ﬂ-)v X(B)» ﬁ_)} = {0} (8)

The differentiation of equation 8 with respect to Gy

Yields
{%} - [%H%} (9)

ety

This equation represents the so-called ‘standard’

form of the semsitivity equatioms. The equation
is solved for the vector of semsitivity derivatives

{49°}, for each design variable of interest, f;.

This method of computing sensitivity derivatives is

known as the Quasi- Analytical Method.

The matrix [g’_ﬁT is the Jacobian of the non-

linear equations (evaluated at steady-state including
consistently linearized boundary conditions) with
respect to the field variables. The discrete sensitiv-
ity derivatives are represented by the vector {%{ },

which signifies the total change in the vector of field
variables for a particular design variable, 8;. The
matrix [22] is the Jacobian of the flow equations
(evaluated at steady-state) with respect to the grid
coordinates ; { g—g_—} is the grid-sensitivity vector and
is computed by the method of Taylor et. al®. The
vector {a%%} accounts for the explicit dependencies
(if any) of the flow equations (including boundary
conditions) on .

Solutions for the ‘standard’ form semsitivity
equations require a direct inversion of [g%] or it-
erations with (a possibly poorly conditioned) {g—g]
as the coefficient matrix (similar to solving equa-
tion 3). The standard form semsitivity equations
are rewritten in ‘incremental’ form as

B}
(452} () o) o
(=) )

- (12)
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The vector {%’:—} represents the mth iteration on

where

the total derivative {%} , and must be driven to

zero to find the solution {%—%} of equation 9. Note,
that no approximations are allowed in the compu-
tation of { d‘g':} , in order that the converged solu-
tion yields ;iﬁ:conect, consistent, discrete semsitiv-
ity derivatives.

The solution of equation 10 does allow ‘approx-
imations of conyenience’ for the left-hand-side coef-
ficient matrix ['3%]- In practice, the approximations
are introduced by using a first-order discretization

for the coefficient matrix, adding a pseudo ‘time-

term’ to the main-diagonal and neglecting consis-
tent linearization for ‘C’ and ‘O’ type boundary-
conditions. The major advantage of solving the ‘in-
cremental’ form of the sensitivity equations over the
standard form is that any linear-system solver that
is used in the analysis code to solve equation 5 can
be used without modification to solve the system
of semsitivity equations in equation 10. This is be-
cause the characteristics (i.e. sparsity pattern and
diagonal dominance) of the coefficient matrices in
equation 5 and equation 10 are very similar to each

4




other. The solution of the ‘incremental’ form sen-
sitivity equations, as derived by Korivi et. al®, has
been parallelized in this work, and will now be de-
scribed.

Parallel Solution of Sensitivity Equations

The computational work involved in solving the
‘ineremental’ sensitivity equations can be divided
into two parts :

(i) Calculate {45} from equation 12. Note that
the matrix [%—g] is computed in parallel (from
the steady-state values of the vector Q*), and
re-used at each iteration. The matrix-vector
product, [g%] {%} is the only vector which
peeds to be recomputed at each iteration. This
matrix-vector multiply needs to be parallelized
across all the available processors. Note, that

the exact jacobian matrix [%g] has more non-

zeroes than the approximate matrix [g—g]. This
implies that parallel matrix-vector multiplica-
tion with the exact jacobian matrix will require
more operations than with the approximate

_jacobian matrix. The matrix-vector product
[—g—%] {%} and the vector {%} remain con-
stant through the iterative process. Both these
vectors are computed in parallel, and stored be-
fore the iterative process begins.

Each matrix-vector multiplication is preceded by
inter-processor communication. This communica-
tion is designed to provide each processor with up-
dated values of {‘fmr} from the neighboring pro-
cessors. This ensures that the ‘parallel’ matrix-
vector product is identical to the ‘serial’ matrix-
vector product.

(ii) Solve the linear system of equation 10 by an it-
erative method. As discussed earlier, the major
motivation for developing the ‘incremental’ sen-
sitivity equations is to use existing CFD solvers
(e.g. spatially-split approximate factorization,
Krylov solvers like GMRES etc.) to solve the
linear system of equations in equation 10. This
paper uses a preconditioned GMRES solver to
solve this linear system. This parallel solver has
been validated for solving the linear system in
equation 5, and is an integral part of the ex-
isting CFD code!®. In this work, the parallel
GMRES solver incorporates a preconditioner
derived from the approximate jacobian matrix,
to accelerate convergence to the exact solution
vector { %9% }

Recall, that the ‘finite-difference’ sensitivity deriva-

tives are evaluated by computing successive ‘per-

turbed’ CFD solutions for each design variable of
interest. For example, if C; = Cr, the steady-state
lift-coefficient, and B; = «, the angle of attack, then
% can be approximated by

40y 60y _ CE*8° ~CET27 ()
- do = ba 2Aa

Cg"’A" and CE'A"‘ are obtained by computing new
CFD solutions using the converged solution for Cf
as an initial guess. In this paper, the parallel code
of reference 13 is used to obtain the ‘perturbed’ so-
lutions for the ‘finite-difference’ sensitivities, which
are subsequently compared with the ‘discrete’ sen-
sitivities obtained from the ‘incremental’ semsitivity
equations. '

Test Results and Discussion

A parallel, preconditioned GMRES solver has
been developed to compute solutions of the semsi-
tivity equations derived from differentiation of the
discretized Navier-Stokes equations. The total com-
putational work corresponding to the original single-
processor domain is partitioned amongst the various
processors of the parallel, distributed-memory ma-
chine. The SPMD (Single Program Multiple Data)
model of programming is invoked as each processor
runs identical copies of the computational code, on
different sets of data.

The parallel code is developed on an Intel
Hypercube with 32 processors. The results from
the parallel semsitivity analysis code are validated
against the original serial code (which is run on a
single processor of a Cray YMP). The scalability of
the domain decomposition algorithm and the pre-
conditioned GMRES solver is tested by running the
parallel code on & range of processors (8, 16 and 32).
The two problems selected for validation are low
Reynolds number subsonic flow over a NACA 1406
airfoil, and transomic turbulent flow over a NACA
1406 airfoil.

Laminar Flow — Subsonic Airfoil

The parallel sensitivity equation solver is first
validated for low Reynolds number subsonic flow
over 2 NACA 1406 airfoil. The flow conditions cor-
respond to & freestream Mach number of M = 0.6,
angle of attack, @« = 1.0°, and Reynolds number,
Re = 5.0+10%. The computational grid is a ‘C’ mesh
of 257+ 65 points, with points clustered near the air-
foil surface and the far-field boundary placed five-
chords from the airfoil surface. The lift-corrected



boundary conditions are implemented on the far-
field boundaries!?.

The parallel, preconditioned GMRES solver is
initially used to obtain a converged steady-state so-
lution, {Q*}, to the discrete non-linear flow equa-
tions (eqn. 2). The parallel validation for the GM-
RES solver is performed on 8 nodes of the Hyper-
cube with an 8+1 partitioning of the 257+65 domain
to yield domains of size 33 » 65 for each process-
ing node. The computed lft, drag, and pitching
moment coefficients obtained for the steady-state
solution are C;=0.1815, Cp=0.0417, and Cy =
—0.0237. These coefficients compare exactly with
those computed with the serial version of the code
on a Cray Y-MP.

The steady-state solution is used as an initial
guess for the ‘finite-difference’ method (FDM), to
compute semsitivity derivatives for Cr, Cp and Cus
with respect to the angle-of-attack «, the freestream
Mach Number M., and the Reynolds Number
Re. The forward and backward perturbations for
‘the ‘finite-difference’ calculations are set to Afx =
+5+10-6%0; (for eqn. 13). A Courant number of 25,
with (a maximum of) ten GMRES sub-iterations
per time-step, is used to gemerate a new steady-
state solution for each ‘perturbed’ condition. The
I, norm of the global residual vector is reduced to
a value of 10~!! to determine the converged solu-
tion for each ‘perturbed’ variable. A summary of
the sensitivity derivatives computed by the parallel
‘finite-difference’ method on 32 processors of the In-
tel Hypercube is presented in table 1a. The sensitiv-
ity derivatives obtained from the parallel, multiple-
domain version of the FDM are identical to those
obtained from the serial, single-domain version of
the FDM on the Cray Y-MP.

The number of iterations to convergence (n.)
for the FDM calculations are plotted in fig. 1. The
values of n, for o and Re remain fairly constant as
the number of processors increases. However, the
calculations for My, (Mach No.) show an increase
in n. as the number of processors increases from one
(Cray Y-MP) through 8, 16 and 32 (Hypercube).
This increase in n, may be attributed to an increase
in stiffness of the coefficient matrix of eqn. 10, as the
single-domain problem is partitioned into multiple-
domain problems on the parallel machine.

The processing times for the FDM calcula-
tions on the Cray Y-MP (1 processor) and the In-
tel Hypercube (8, 16, 32 processors) are summa-
rized in fig. 2. The processing times shown do
not include the time required to compute the ini-
tial (unperturbed) steady-state solution. The to-
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tal time required to obtain all sensitivity derivatives
for the three design variables on 32 parallel proces-
sors is 1256 seconds, as compared to 778 seconds
on the Cray Y-MP. Thus, the 32 processor Intel
Hypercube is 61% slower than the single-processor
Cray Y-MP when calculating sensitivity derivatives
by the FDM. Hence, it may be projected that 52
(or more) parallel processors would be required to
match (or exceed) the single-processor performance
of the Cray Y-MP for the FDM calculations.
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The parallel, preconditioned GMRES solver de-
veloped for the original CFD code (and used to
solve eqn. 5) is applied in the semsitivity analysis
code to solve the ‘incremental’ sensitivity equations
(eqn. 10). The steady-state solution, {Q*}, is used



in equation 8 to compute the right-hand-side vector
{%} for equation 9. The sensitivity derivatives
obtained from solving the ‘incremental’ equations
by the Quasi-Analytical Method (QAM) on the par-
allel machine are summarized in table 1b. The val-
ues of the sensitivity derivatives in tables la and
1b are identical to five decimal places. This vali-
dates the accuracy of the parallel Quasi-Analytical
Method for providing highly accurate semsitivity
derivatives from solutions of the ‘incremental’ sen-
sitivity equations (eqn. 10).

The system of sensitivity equations is declared
solved when the I; norm of the residual vector
{%%.:} is reduced to 108, A Courant number of
25, with (2 maximum of) ten GMRES sub-iterations
are used to solve the linear system at each itera-
tion. The variation in the number of iterations to
convergence with the number of processors is plot-
ted in fig. 3. As expected, the values of n. for the
three design variables remain fairly constant as the
number of processors increases. This demonstrates
the scalability of the preconditioned GMRES solver
when applied as a linear-system solver for solving
the sensitivity equations by the QAM.
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A comparison of the processing times over var-
jous processors for the quasi-analytical method is
presented in fig. 4. The total time required omn 32
processors to obtain all sensitivity derivatives for all
three design variables is 944 seconds, as compared
to 667 seconds on the Cray Y-MP. Thus, a complete
calculation of sensitivity derivatives by the QAM on
32 processors of the Intel Hypercube requires 42%
more processing time than a single processor Cray
Y-MP. Assuming a linear speedup for the parallel

QAM, 45 (or more) parallel processors would be
required to match (or exceed) the single-processor
performance of the Cray Y-MP.
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A head-to-head comparisons of the parallel
FDM and the parallel QAM reveals that the QAM
on 32 processors (944 secs.) is 25% faster than the
FDM on 32 processors (1256 secs.). As the problem
size increases (for denser 2-D grids and 3-D grids)
and the computational work per processor increases,
the advantage of the QAM will further increase with
respect to the FDM. This is because an increase in
workload will cause a more significant increase in
the ‘computation to communication ratio’ for the
QAM than the FDM.

Turbulent Flow — Transonic Airfoil

This second test case demonstrates the com-
putation of sensitivity derivatives for transonic tur-
bulent flow over a NACA 1406 airfoil. The flow
conditions correspond to My = 0.8, a = 1.0°, and
Re=5.0+108. A ‘C’ mesh with 257+65 points is used,
with the far-field placed five chord-lengths from the
airfoil surface. The clustering near the airfoil surface
is much tighter than the previous (laminar) grid,
in order to account for the higher Reynolds num-
ber of the flow. The laminar viscosity is computed
by Sutherland’s temperature law, and the turbulent
viscosity is modeled by the algebraic model of Bald-
win and Lomax!®,

A steady-state solution, {Q"}, is first obtained
with the preconditioned GMRES solver on 32 pro-
cessors of the Intel Hypercube. The computed
lift, drag and pitching moment coefficients are



CL=0.4166, CD=0.7750 E—2, and CM = —0.4563
E—1. All three coefficients compare identically with
those computed by the serial code on a Cray Y-MP.
This validates the accuracy of the parallel Baldwin
Lomax turbulence model for this test case.

The sensitivity derivatives of Cz, Cp and Cn
with respect to @, Mo, and Re are first calculated by
the ‘“finite-difference’ method (FDM). The GMRES
solver is used to obtain the ‘perturbed’ steady-state
solutions from the unperturbed solution, {Q*}. The
time-integration parameters for this test case are
identical to those used in the subsonic test case. The
sensitivity derivatives obtained by the FDM on 32
processors of the parallel machine are summatrized in
table 2a. All the sensitivity derivatives are identical
to the values obtained by serial calculations with
the FDM on a single-processor Cray Y-MP.

The convergence rate of the preconditioned
GMRES solver is unaffected by the number of pro-
cessors used in the FDM calculations. This is clearly
evident from the plots in fig. 5. The scalability of
the parallel GMRES solver as used in the FDM is
thus validated for 32 processors. The processing
time characteristics for the three design variables are
shown in fig. 6. The total time is dominated by the
M., calculation, which is consistent with the results
for the subsonic test case. The 32 processor parallel
calculations (2792 secs.) are 55% slower than the
equivalent single-processor Cray Y-MP calculations
(1802 secs.), which implies that 50 (or more) paralle]
processors would match (or exceed) the Cray Y-MP
performance. These projections are very similar to
those made for the subsonic FDM calculations.
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The ‘incremental’ sensitivity equations for this
test case are solved by using the parallel precon-
ditioned GMRES solver with a Courant number of
25. The sensitivity derivatives computed with 32
processors are listed in table 2b. These sensitiv-
ity derivatives compare exactly with the sensitiv-
ity derivatives obtained from serial calculations with
the QAM. However, they do exhibit some discrep-
ancies when compared with the parallel FDM calcu-
lations. This is because the variation of laminar and
turbulent viscosities with respect to the field vari-
ables, {Q*}, and the computational grid, {X}, is
neglected in the numerical construction of the vec-
tor {%%} of equation 9. Hence, for turbulent flow
cases, the ‘incremental’ sensitivity equations cannot
provide the exact sensitivity derivatives ; the ‘finite-
difference’derivatives are more accurate in this case.
This is true regardless of whether the semsitivity
equations are solved on the serial or parallel ma-
chines.

The variation in the number of iterations with
the number of processors for the QAM is plotted
in fig. 7. It is clear that the number of iterations
to convergence remains constant for any number of
processors. This is an important result as it helps
establish the scalability of the preconditioned GM-

tions with the QAM.

The processing times for the three design vari-
ables are plotted in fig. 8. The semsitivity deriva-
tivecalculations for Re require the maximum pro-
cessing time, which is consistent with the results for
the subsonic test case. The parallel calculations on
32 processors (2140 secs.) are 39% slower than the
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serial Cray Y-MP calculations (1540 secs.)-. This re-
sult compares excellently with the processing time

characteristics for the subsonic test case.
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A comparison of the parallel FDM and paral-
lel QAM calculations reveals that the latter (2140
secs.) is 24% faster than the former (2792 secs.).
This observation is identical to that made for the
subsonic test case, and reinforces the fact that
the parallel preconditioned GMRES solver performs
uniformly for semsitivity derivativecalculations for
subsonic and transonic flow conditions.

Conclusions and Future Work

An implicit, scalable, parallel linear-system
solver, with a convergence rate independent of the

number of parallel processors, is successfully de-
signed and tested for obtaining semsitivity deriva-
tives of the Navier-Stokes equations on a distributed
memory parallel machine. The solver is based on a
“ocally’ preconditioned GMRES algorithm and is
constructed with a general domain-decomposition
strategy in an SPMD programming framework.

All tests conducted on a 32 processor Intel Hy-
percube indicate that the parallel GMRES solver
provides comsistent and accurate sensitivity deriva-
tives for both low Reynolds number (laminar) and
high Reynolds number (turbulent) flows. The ac-
curacy of the computed sensitivity derivatives is
found to be independent of the number of proces-
sors, for both flow conditions tested in this paper.
The finite-difference method of calculating sensitiv-
ity derivatives is found to be more accurate than
the quasi-analytical method, particularly for high
Reynolds number (turbulent) flows. The quasi-
analytical method of calculating semsitivity deriva-
tives is 25% more efficient than the finite-difference
method, in terms of processing time. The parallel
processing times for both the low and high Reymnolds
pumber test cases indicate that 40-50 parallel pro-
cessors of an Intel Hypercube would match the per-
formance of a Cray Y-MP. The parallel, precondi-
tioned GMRES solver exhibits similar processing
time characteristics and scalability when calculat-
ing sensitivity derivatives for both the laminar and
turbulent flow cases.

In future work, the procedure for obtaining sen-
sitivity derivatives developed in this paper will be
tested on larger parallel machines. This will be
done to further study the scalability of the code,
and the effectiveness of the parallel solver on large
numbers of processors. The sensitivity analysis code
will also be ported to a ‘cluster’ of workstations, in
order to study its performance characteristics in a
loosely coupled parallel environment. The feasabil-
ity of obtaining sensitivity derivatives in a paral-
lel environment by automatic differentiation of the
Navier-Stokes equations with a software package like
ADIFOR!?, will also be investigated.
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Table 1a. Subsonic Airfoil ; Finite-Difference Method

B dCL/dBx dCum/dBx dCp /df;
a 6.1218E+0 9.1815E-2 —3.1690E-2
M 5.4302E-3 1.6279E-2 —4.7328E-3
Re 5.9580E—6 —4.9120E-6 —6.5630E—7
Table 1b. Subsonic Airfoil ; Quasi-Analytical Method
Bx dCyr/dBx dCar/dPx dCp /dBs
a 6.1218E+0 9.1813E—2 —3.1675E—~2
My 5.4248E-3 1.6279E-2 —4.7296E—-3
Re 5.9577E—6 —4.9123E-6 —6.5637E—7
Table 2a. Transonic Airfoil ; Finite-Difference Method
B dCr/dBs dCx /dfB dCp /dP
a 1.2976E+1 4.3337E-1 —6.2317E-1
Mo 2.0293E+1 1.9710E-1 —5.9554E—1
Re -1.1112E-9 —-2.8051E-10 1.4250E—-10
Table 2b. Transonic Airfoil ; Quasi-Analytical Method
Br dCy/dp:* dC/dBs* dCp/dfs*
a 1.1981E+1 4.1926E-1 —4.6152E-1
Mo 1.7419E+0 1.9215E-1 -5.3973E-1
Re —6.4846E—9 —7.3551E—-10 1.3584-9
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